The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1  1  X  1  1  1 X+3  1  1  1  1  X  1  1 2X+6 X+6  1  1  1  1  1 2X+6  3  1  1 2X  1  1 2X  1  3  1  6 2X  1  1  1  1  1  X  1  1  1 X+6  1  1  1  1 X+3  1 2X  1 2X+6  1  1  1  1  1  1  1  1  1  6 X+6  1 X+6 2X X+6  1  1  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+3 2X+1  1 X+2  8  4  1 X+6 X+8 2X+8 2X+4  1  6 2X+4  1  3  5 X+5 2X+8 2X+1 2X+1  1 X+6  0 X+1  1  1 2X+3  1 X+2  1  4  1  0  3 X+6 X+7 2X+3 2X+7  1 2X  0 X+8  1  5 2X+4  X X+5  1 2X+2  1  2 2X X+1  5 X+4 X+7  X X+6 2X+6 X+4 2X+2  1  X X+7  1  1  6  1  3  1  1  3
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+2 2X+4 X+1  8 X+3 X+6 X+8  5  7 2X+3  2 2X+3  4 X+5 2X+5  1 2X+8 2X+1  3 2X  7 X+7  1 X+3 X+6  5  2 X+1 2X+3 2X+8 2X+7 X+4 2X  1 2X+3  6 X+5  8 X+1 2X+4 X+2 X+4  X 2X+2 2X+4  3  1 X+2  3 X+5  3  5  1 X+1  6  4 2X+6  2  X  6 2X+1 X+4 X+6  1 2X+8  3 X+5  1  5 X+7 X+4  7  3

generates a code of length 90 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 173.

Homogenous weight enumerator: w(x)=1x^0+360x^173+708x^174+1602x^175+2160x^176+1630x^177+2208x^178+1908x^179+1070x^180+1386x^181+1476x^182+888x^183+804x^184+1020x^185+742x^186+630x^187+282x^188+180x^189+330x^190+240x^191+42x^192+2x^195+6x^199+6x^200+2x^204

The gray image is a code over GF(3) with n=810, k=9 and d=519.
This code was found by Heurico 1.16 in 1.43 seconds.